Commonly used functions in the Pandas library and how to use them

This article lists important functions in the Pandas library for Python and provides guidance on how to use them. Pandas is a powerful tool for data manipulation and analysis in Python.

Pandas is a powerful Python library used for data manipulation and analysis. It provides a lot of useful functions to handle data, from creating, querying to processing and transforming data. In this article, we will list the available functions in Pandas and how to use them.

1. pd.read_csv()

Read data from a CSV file into a DataFrame.

import pandas as pd
df = pd.read_csv('data.csv')
print(df.head())

2. pd.DataFrame()

Create a DataFrame from data.

data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)

3. df.head()

View the first 5 rows of the DataFrame.

print(df.head())

4. df.tail()

View the last 5 rows of the DataFrame.

print(df.tail())

5. df.info()

View general information about the DataFrame.

print(df.info())

6. df.describe()

Summary statistics of the DataFrame.

print(df.describe())

7. df.shape

Return the number of rows and columns of the DataFrame.

print(df.shape)

8. df.columns

Get the list of column names.

print(df.columns)

9. df.dtypes

Return the data type of each column.

print(df.dtypes)

10. df['column_name']

Access a column of the DataFrame.

print(df['Name'])

11. df.loc[]

Access rows by label (label-based).

print(df.loc[0])

12. df.iloc[]

Access rows by index (index-based).

print(df.iloc[0])

13. df.drop()

Drop rows or columns from the DataFrame.

df = df.drop('Age', axis=1)
print(df)

14. df.isnull()

Check for missing values in the DataFrame.

print(df.isnull())

15. df.fillna()

Fill missing values in the DataFrame.

df = df.fillna(0)
print(df)

16. df.sort_values()

Sort data by one or more columns.

df = df.sort_values('Age')
print(df)

17. df.groupby()

Group data by one or more columns.

grouped = df.groupby('Age')
print(grouped.mean())

18. df.merge()

Merge two DataFrames based on one or more keys.

df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'ID': [1, 2], 'Age': [25, 30]})
merged = df1.merge(df2, on='ID')
print(merged)

19. df.apply()

Apply a function to each row or column.

df['Age_plus_one'] = df['Age'].apply(lambda x: x + 1)
print(df)

20. df.to_csv()

Save DataFrame to a CSV file.

df.to_csv('output.csv', index=False)

System requirements:

  • Python 3.6 or higher.
  • Pandas library (install via pip).

How to install the library:

To install the Pandas library, simply use pip:

pip install pandas

Tips:

  • When working with large datasets, you can use df.memory_usage() to see how much memory the DataFrame is consuming.
  • It’s a good practice to check your data carefully before applying operations to avoid errors from invalid or missing data.
Tags: Python, Pandas


Related

Convert Markdown string to HTML using Python

A guide on how to convert a Markdown string to HTML using Python with the `markdown2` library, making it easy to integrate this conversion feature into your application.
Convert accented Unicode characters to non-accented in Python

A guide on how to convert accented Unicode characters in the Vietnamese alphabet to non-accented letters using Python. This Python code efficiently handles Vietnamese text processing.
Send Authentication Header Token when POSTing data to API using Python

A guide on how to send a POST request to an API with an Authentication Header Token using Python. This method is commonly used for authentication and security in API communication.
How to write data to an Excel file using Python

A guide on how to use Python to write data into an Excel file using the openpyxl library, making it easy to manage and handle Excel data in your projects.
How to convert TensorFlow model from .pb to .h5

A detailed guide on how to convert a TensorFlow model from the Protocol Buffers (.pb) format to HDF5 (.h5) format, allowing for easy storage and loading of models for machine learning applications.
Trim image to remove whitespace using Python

Guide on using Python to trim whitespace around an image (trim image) using the OpenCV library. This Python code helps to crop out excess whitespace around an image to highlight the main content.
Creating video from images using OpenCV

A detailed guide on how to create a video from images using Python and the OpenCV library. The article includes source code and line-by-line explanations.
How to DELETE data from a MySQL database using Python

A guide on how to use Prepared Statements in Python to delete data from a table in a MySQL database safely and effectively.
Guide to Creating a Registration Form in Python Using PyQT6

A detailed guide on how to create a registration form in Python using PyQT6, including how to add input fields and handle the registration button event.
How to reverse a Series in Pandas

A guide on how to reverse a `Series` in Pandas, a popular Python library for data manipulation. This article explains various methods to reverse the order of elements in a `Series`.

main.add_cart_success